
• • 
: .• 

lAD ?0486~ 

REPORT NO. 273 

THE PRECISE DETERMINATION OF THE POSIT I ON OF 

A POl NT IN SPACE, 

FROM PHOTOGRAPHS TAKEN AT TWO GROUND STATIONS 

by 

T. E. Sterne 

April 1942 

J'his 'ifocument tias been apprcmd for P-Ublic release and sale; 
Jts distribution is unlimited. 

UoS. ARMY ABERDEEN RESEARCH AND DEVELOPMENT CENTER 
BAlliSTIC RESEARCH LABORATORIES 
ABERDEEN PROVING GROUND, MARYLAND 



i 
l 

. l 
i 

; 

I 
I 
I 

:J 
~ 

~~· :. 
!k' >. ;'. 
15:~1· ·, -

' i 

l .. --"··. 
' \ ---· .. ---·-·· -. 

Ballistic Research 
Laboratory Report No. 273 

. , ... /1.1. 

/ 
. ./ 

TES/abh 
Aberdeen Proving Ground, Md., 
April 13, .1942. 

. ,_ ·~ 

THE p);'1tcrsE DETERMINATION OF THE POSITION OF A POINT IN 
~ SP1\CE, FROf-·1 PHOTOGRAPHS "T.t.KEN AT TWO GROUND"STATIONS · 

Abstract 

Simultaneous photographs are taken, of the same aerial point, by 
two cameras on the ground. Stars also are photographed, on some or all 
of the plates. Here the mathematical procedure is developed and described 
for finding accurately the position of the aerial point with respect to 
a set of terrestrial axes, E , '1\ , and r, • The formulae are designed 
to expedite the numerical calculations as much a.s possible~ consistently 
with an accuracy of the order of a second of arc; i.e., of better than a 
foot at 50,000 feet. Another less accurate procedure is also described 

· that does not involve star-images on all of the plates. The present dis­
cussion is applicable to the case where both camera axes are vertical. 
Some of the formulae are applicable also to oblique camera axes. ~ 

1. Introduction. In order to obtain the.fundamental 
data from which bomb ballistic tables can be prepared, it 
is necessary to know the position and velocity of an airplane 
at the instant when it releases a bomb. Both the position 
and velocity can be determined from a knowledge of the posi-. 
tion of the airulane at each of several knmm times and from 
a kno·wledge of the time of release. Nearly instcmtaneous 
light signa.ls can be emitted from the airplane at knovm 
times, and each of these signals can be photographed by two 
cameras mounted rigidly on terrestrie.1 piers. The problem 
with which we are here concerned is the determination of the 
position in space of each of these light signals, from the 
information provided by 7\!uch photographs. 
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Th~ position of an aerial point is determined when 
its directions from both cameras are known. In order to be 
of use in range bombings from great altitudes, these direc­
tions must be found to a very high accuracy. The most accu­
rate, and yet not prohibitively laborious or lengthy pro­
cedure is to photograph known "comparison" stars on the same 
plates that photograph the aerial points. Then, by adapting 
to the present problem the simple, mechanical, and yet ex­
ceedingly accurate methods of photographic astrometry, one 
can find the directions of the rays to the aerial points 
from-a knowledge of the· positions of the comparison stars, 
accu·r.ately listed in star catalogues. The x and y coordi­
nates, of the images of the stars and of the aerial points 
on the photographic plates, must be measured on a measuring 
engine. 'l'he star-images determine a set· of npla te constants", 
and the plate constants in turn determine the direction 
ratios to the aerial points. It is not necessa.ry for the 
ways of the engine to- be exactly :perpendicular to each other. · 
~r parallel to the edges of the plate; it is not necessary 
for the scales of the meB.suring engine, in x a.nd y, to be the 
same; no fiducial marks are necessary rn the plates; the 
focal lengths of the cameras need not be accurately known; 
and errors in the assumed orientations of the camera.s pro­
duce only second-order errors in the resulting directions 
to the aerial points. 

An alternative and less accurate procedure is to 
determine the plate constants on some plates from the star­
images, and to find the directions of the rays to an aerial 
point on other plates by employing fiducial marks impreised 
upon the plates by the camera. The alternative procedure 
obviates the need for employing star-images on all the · 
plates, but presumes a very high degree of fixity and per~ 
manence in the mountings and orientations of .the cameras. 

·' 

Here we develop and present the necessary formulae, 
many of which are mere adaptations of the well-knovm formulae 
of photographic astrometry. Astrometry, however, concerns 
the relative directions of stars with respect to each other; 
in the present problem v:e have also to find directions rela­
tive to the surface of the earth. The present problem, there­
fore, has some new aspects. Further, it is desirable to 
simplify some of the conventional astrometric formulae with a 
view to accelerating routine computation, to diminishing the 
frequency of errors of computation, and to facilitating the 
checking of the various stages of the reductions. To avoid 
errors arising from the entering of tables inco~rectly, an 
effort will be·made to avoid the use of trigonometric func­
tions, by using direction cosines instead. After some pre­
l~minary transformations have been made to direction cosines, 
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no further use will be made of trigonometric functions. It 
is believed that the new forms into which some of the old 
astrometric formulae have been recast may be useful outside 
of the present problem in astrometry. 

The use of two terrestrial cameras was urged by 
Professor Henry Norris Russell, to whom the writer is gr~te­
ful also for his valuable and specific suggestions. Among 
them were the finding of lens-distortion by examining the 
residuals, of a least squares solution for plate constants. 
He also pointed out that whenever the nbase" of a plate 
is the zenith, then the direction cosines in the altitude­
azimuth system, to any point, can be found at once from 
its standard coordinates. 

We take up the problem in the order in which the 
computations should be made. We discuss first the reduction 
of mean star positions, folli~d from a star-catalogue, to 
apparent positions. Here the most expeditious procedure, 
since standard coordinates must be computed, is to compute 
direction cosines at once and then correct the direction 
cosines, rather than the right ascensions and declinations, 
for precession since the beginning of the year, for nutation, 
and for aberration. Then standard coordinates are to be 
computed, to be corrected for lens-distortion and third-order. 
terms in refraction. Then the plate constants are found, a;nd· 
from them and the plate-coordinates of the aerial point one · · 
computes the direction ratios of the rays to the aerial ·• 
point. From these (corrected for refraction and clistortiq;n) ... ·. 
the terrestrial coordinates of the aerial point follow at • _ ... , 
once. 

i• 

. In subsequent sections we show how to follow the 
alternative procedure that does not use star-places on all 
the plates. , 

Equations to be used by computers are numbered with 
Roman, other equations with Arabic, numbers. 

2. The Reduction of the Star-Places. Reduce the cata­
logue mean positions of the stars to the beginning of the 
current year, by applying the annual and sec\uar variations 
(which include proper motion) listed in the catalogue. Apply 
also the proper motion, if it amounts to more than 0".1 (or 
0 5 .01) from the beginning of the year to date, and apply 
further the small diurnal aberrat~on. The equations are 

-3-

... .... -



,-, 
~,_} 

J .. · 

j 

where 

a,o 

0: 'b 0 0 

I I cx,o 
11 11 

a,o 

i' 

&t .. 
II 

" =, " 
O:t2 I 

-+ 08~02 .. t ut 0 200 

" (I) 
6 = 6 6t .. 6v It I ... .. u . 

0 200 

are the annual proper motions in right ascension 
and declination, 

are the right ascension and declination, for the 
mean equinox of the beginning of the current year, 
and epoch of date, affected by zenithal diurnal 
aberration, 

ar~ the catalogue right ascension and declination 
(for the mean equinox of the catalogue) 

are the catalogue annual variations, 

are the secular variations in right .ascension and 
declination, · · · 

is the number of whole years elapsed since the 
epoch of the catalogue, 

is the fraction of the current year elapsed, 
and, 

os.02 is the zenithal diurnal aberrati9n. 

NOTE: The symbols ·t and 11- will be used later in different 
senses. 

It will be noted that t and t 2 /200, as well as t', are the 
same for all the stars used and may be computed once and for 
all for any date. The above reductions are, therefore, very 
rapidly performed if t, t 2 /200, and t' be entered on a slip 
of paper. If the Boss General Catalogue is used, 1 for 1942 
is, of course, -S, and t 2 /200 is +0.32. The terms in .t' are 
usually ignorable. 
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A word of explanation is required about the diurnal 
aberration.. Its effect upon the apparen.:t position is 

da: =, 0" .~1 c.os cp cos '1' sec 6 
d6 =. 0" .~1 cos cp sin 'T' sin 6 

where T is the hour-angle and cp the latitude. It can thus 
never exceed 0".31 in absolute amount, in either right 
ascension or in declination. With vertical cameras the 
stars photographed will be close to the zenith -- wi:th the 
Goerz cameras,_ within 20° of it. At the zenith · 

,, 
s d a: = 0 • 021, do = o. 

(2) 

It follo~vs from equations (2) that at Aberdeen Proving Ground, 
the diurnal aberration 20° from the zenith can differ from 
its zenithal value by no more than on .. 16. Thus the equations 
(I) allow· correctly for diurnal aberration to within this 
high accuracy .. 

Compute equatorial direction cosines, 1
0

, M
0

, N
0

, 
for each star by the formulae 

10 = cos6 coso: 

Mo = coso sin ex: 

No ::::; sin 6. '· 

It will be noticed that'these cosines relate to the mean 

(III) 

equator and equinox of the beginning of the current year, and 
contain the diurnal aberration, and the proper motion since 
the beginning of the year. These cosines will thus never 
need to be computed more than once in each year, except, 
rarely, in the case of large proper motions. 

' It is next necessary to correct these cosines for 
precession since the beginning of the year, for nutation, and 
for annual aberration. This correction is most readily 
carried out by the formulae 
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L = L
0 

+ llL 

M=M +6M 
0 

N = N
0 

+ llN 

(IV) 

where the corrections ilL, llf.f, and llN are given by the formulae 

p = DL - CM - iN 0 . 0 0 

10,000 llL = PL
0 

- FM
0 

AN
0 

D 
(V) 

10,000 M~ = FLO + PMO + BN + c 
0 

10,000 llN = AL. BM + ·PN + i 
0 0 0 

In these equations the coefficients A, B, c, D, F, and 1 de­
pend only on the date, and should be tabulated to an accuracy 
of 0.001 for convenient reference in the use of the present 
formulae. They are defined by 

B = 0.04848 B8 

c ·- 0.04848 ce 
D = 0.04848 De 

F = 0.72722 (fe + ft ) e 
!• 

i = 0.04848 i 8 

A ::: 0.9717 Ae from 1937 through 1960, and, 

A ::: 0.9716 Ae from 1961 through 1985, 

where the symbols A8 , B8 , Ce, De, f 8 f'e and ie denote the 
quantities that are listed in the American Eohc:meris and 

· Nautical P~lma.nac, f'or each day in the year, in the section 
·\ 4ealing with star reductions, under the no.mes tTAn, "Btt, ncn, 

nnu, nfn, "f'", and nin without the subscript nen. These 
quantities are all in seconds of arc with the exception of A , 
a pure number, and fe and fte which are in seconds of time. 8 

A, B, c, D, in the notation of the Almanac are Besselian star 
numbers; f, f', and i are Independent star numbers .. 
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The equations (IV) and (V) have been derived merely 
by writing down the first derivatives of L, M, and N with 
respect to a and b , and employing the formulc.e for d a and 
db that are listed on page 222 of the American Eohemeris and 
Nautical Almanac for 1938 under the title Hindependent Star 
Numbersn. The terms in the proper motion can be dropped from 
the latter formulae since proper motion has been already 
allowed for. Formulae (IV) and (V) follow after some algebraic 
reductions, vrhich the reader can readily verify. The second­
order terr:1s in ~1, 6N, and 6N are of the order of only 
0.0000001, or on.o2, and have been here ignored. 

In using equations (V), it is sufficient to know 
the coefficients only to the nearest 0.001 and to use approxi­
mate values of 1 0 , N0 , a.nd N0 rounded off to the nearest 
0.001. Then 61, 6M, and 6N will be accurate to the nearest 
0.0000001, which is sufficient. It is a good plan to retain 
seven digits in L0 , M0 , N0 , L, M, and N and throughout the 
subsequent stages, except where otherwise specified in 
following sections. We have already pointed out that the 
cosines 1 0 , M0 , N0 can be computed once and for all for a 
whole year of observation except in the rare cases of stars 
of large proper motion. Likewise, L, M, N will stay effec­
tively constant on any one night and will vary only slightly 
from one night to the next. 

The computation of L, Jl-1.? N can be checked by 
verifying that the sum of their squares is unity, and this 
check should previously have been applied to 1 0 , M0 , and N0 • 

3. Standard Coordinates. Denote by "t the sidereal 
time of the photograph of the star-images. This time will 
differ for the two cameras even if they are exposed simul­
taneously, unless they lie on the same meridian of longitude; 
denote by 1, N' n the direction cosines of a star referred 
to the axes of the hour-angle declination system. Denote the 
ordinary equatorial system of axes by xn, yn, zn vvi th the x" 
towards the equinox, .:md ztt towards the north pole of the sky. 
Denote the hour-angle declination system of axes by xt, y', zt, 
with x' pointing towards the intersection of the ecuator with 
the observerts meridian, and with the zt axis contin~ing to 
point to the north pole. The primed syste~ of axes is obtained 
by rotating the unprimed system positively through the angle"t 
and thus 
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1 = L cos 't + M sin 't 

m = L sin 't + M cos 't 

n = N 

The factors cos -r and sin 't must be loolced up, s.nd then all 
the stars that one is using must have their old cosines, 
L, M, and N transformed by the equations (VI) into the new 
cosines 1, m, n. The new cosines may be checked by veri­
fying that the swn of squares is unity, and are thus 
rapidly computed and verified. 

It is important (if one is using the American 
Ephemeris and Nautical Almanac for computing the sidereal 
time from the standard time) that the true sidereal time, 
including terms of short period in the nutation, must be 
used and. not the uniform sidereal time. The "sidereal 
time of O~listed in the Almanac may be used properll for 
the conversion; but not the flcivil time of sidereal onn, in 
which short-period terms have been ignored. 

By the base of a photographic plate, we mean the 
image on the plate of the infinitely distant point \vhose 
rays enter the canera perpendicularly to the plate. With 
a horizontal plate, the base is the image of the camera's 
zenith, of vv-hich the hour-angle is zero G..nd of which the 
declination is egual to the latitude, ~' of the camera. 
We are here concerned with a horizontal plate, whose base 
is the zenith; in the next section we shall discuss the 
magnitude of the errors in direction that can result from 
errors in levelling, the former errors being much smaller 
than the latter. 

(VI) 

Consider a set of axes OX, OY, OZ with OX parallel 
to the yt axis, OZ towards the camera's zenith, and OY in 
the plane ZOz' and, therefore, in the terrestrial north 
direction. Consider a plane Z = K where K is some constant. 
The X and Y coordinates of the intersection of this nlane 
(called the "standard coordinate planeH) with a ray 6Q are 
said to be the "standard coordinates" corresponding to the 
direction OQ. Let the direction cosines of OQ in the x', y', 
zt system be 1, m, n. The cosines of the angles between 
the axes of the two systems of coordinates are 

xt 

Y' 
zt 

X 

0 

l 

0 

y 

-sin q> 

0 

cos q> 
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cos q> 

0 

sin q> 
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\ .J Thus the direction cosines of OQ in the X, Y, Z system are 

m, - 1 sin '.P +' n cos q>, . 1 cos q> + n sin q> 

and the intersections desired are z = 1, and, 

m 
X = K 

~1 
+ yn 

y = K@n yl 

~1 +yn 

· .where ~ = cos (p, y = sin cp. The fL:.ctors ~ and y are 
mere constants dependent only on the latitude of the camera, 
and thus the equations (VII) allow the standard coordinates, 
X and Y, of any star to be readily computed. For the Goerz 
cameras the greatest angular departure from the OZ axis is 
about 20°, and it is, therefore, suggested that the constant 
K be set eoual to 10 in order not to have too small X's and 
Yts. Equation (VII') may be used to check the computation 
of X and Y: · 

(VII) 

The equations (VII) may also be derived from triose of 
Turner* or Schlesinger**, who employ a different notation, if 
one transforms to direction cosines after inserting in their 
formulae a base \7hose declination equals the latitude, and 
whose right ascension is equal to that of the zenith. 

. , ~ . . ' . ·.• . . ; . . ' . . . . 
• Schlesinger, Transactions of the rate University Observat£!!L Y~ No.!O. 
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4. Accuracy of Levelling the Plate. The standard 
coordinates will be used, in a process that is really a 
type of interpolation, to find the directions of images 
on the plate from a knowledge of the directions of known 
star-images. It is easy to find approximately the effect 
of small errors of levelling upon the accuracy of direc­
tions thus interpolated. In the accompanying diagram, C 
is the principal point of the camera lens, CD is vertical, 
AE is the assumed horizontal position of the plate, BF is 
its actual position, A and E are two star-images such that 
AD = DE. Denote the error of levelling, namely the angle 
BDA, by a ; denote the angle ACD by r, Then A and E 

c 

correspond to the standard coordinates computed for an 
assumed level plate. The distance from·B io B' is nearly 
a (AD) where Bt is the foot of the perpendicular from B 
to AE; and thus· AB t is nearly c. (AD) 1;, • Now D. is the mid,..-
point of AE, and differs from the mid-point of BF by the 
distance AB'. If D ·is compared vfi th the images B and F 
on the tilted plate, one will, therefore, infer, ignoring 
the tilt, a direction for CD that is in error by the angle 
(AB')/(CD), or ar,-:a , nearly. . 

Angular errors can therefore arise, in the direc­
tions of measured images inferred from the star-images, 
equal to the angular error of the base of the plate multi­
plied by the square of the angular semi-field of the 
plate. The semi-field for the Goerz camera is about 20°, 
or one-third of a radian; consequently, the greatest error 
in an inferred direction will be about one-ninth of the 
angular error of the adopted base. If the zenith is adopted 
as the base, then an error of less than llf of arc will result 
from a departure of the plate of 9tt from horizontal. This 
limit of 9" can readily be met by careful levelling, causing 
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_the greatest errors arising from uncertainty of the base 
to be smaller than one second of arc. 

5. Corrections for Lens Distortion and Astronomical 
Refraction. The camera lens distorts, causing images to be 
displaced radially away from or towards the base of the plate. 
For any but a very poor lens, or one badly tilted in its 
cell, the distortion is purely radial; and the effect of 
atmospheric refraction is likewise (with the plates "based" 
at the zenith) purely radial from the base. Both effects 
can therefore be considered at once, since they are similar. 
Further, it is easier to consider effects and corrections to 
the standard coordinates X, Y than to the plate coordinates, 
measured on an engine, of photographic images. The standard 
coordinates will be compared eventually with the plate 
coordinates, and therefore it is logically immaterial whether 
one corrects the plate coordinates, or allows in the standard 
coordinates, for distortion and refraction; and the latter 
procedure is easier. Atmospheric refraction moves the ob­
served position of a star towards the zenith by an angle 

z = u tan z 

where z is the zenith distance and * 

u== 983b' 
460+t 

where b' is the barometer reading at the camera in inches, 
and tis the temperature of the·air near the camera in 
degrees Fahrenhe:Lt. These formulae reDresent observed re-" 
fractions correctly within a second ofL arc for zenith dis-­
tances less than 75°, and for distances under 20° are con­
siderably more accurate. At Aberdeen, u is about 58" and 
this value can be taken e.s standard, vrfth an accuracy 
sufficient for present purposes (for reasons which will be 
obvious later). It is easily verified that within 20° of 
the zenith, it is immaterial whether the refracted or unre­
fracted tan z is used in formulae (8), for the difference 
of refraction thereby introduced is smaller than 0".01. 

. Denote by r the distance (X 2 + Y2 )
112 of the 

point X, Y from the origin on the standard coordinate 
plane. · 

* Comstock, Sidereal Messenger, April, 1890. 
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X,Y 

r z 

0 

The effect of refraction is to diminish ~ by ur/K, and thus 
to diminish 

by 
r = K tan z 

· dr - - K(sec 2 ~) ur/K 

= -ur(l + r 2 /K 2
). 

The first term~ linear in r, amounts merely to a change of 
scale and can be ignored, since the reduc~ion procedure will 
automatically allow for scale factors. We are left with the 
third-order term 

dr = -ur3/K2 

where u must be expressed in radians. With u = 58 11 , K ::::: 10, 
(10) is 

dr = -0.000002812 r3 

This amounts only to 2n.7 at the edge of a Goerz plate, and 
changes only on.1 for a change of one inch in the barometer, 
or of 17° F. It is for the prededing reason that a constant 
value of 58" may be adopted for u at the Proving Ground, 
with sufficient accuracy. 

(10) 

(11) 

The effect of distortion is similar, and ca,n in­
volve only odd powers of .t• The diagram below shows the 
nodal point of the lens at 0; and a ray with an angle of 
incidence of ~~ before entering the lens, and with an angle 
of incidence z' a~ter traversing the lens -- the difference 
(£,. - z) being the angular distortion. It is clear that r' 
is an odd function of z, and hence that the linear distortion 
(~ - r) must be an odd function of ~ involving only odd 
powers of !.· 
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For the same reason as in the case of refraction, the terms 
linear in r can be ignored, being absorbed in the scale fac­
tor, and we are left only with cubic and higher odd powers 
of r, thus: 

dr = A'r3 + B'r5 + ••• 

In 'combination with the cubic terms in refraction, the~ com­
bined effect is therefore 

+ ••• 

The constants A" and B' (B' will probably be 
trivial) must be found once and for all empirically, by 
the method to be described shortly, for each camera lens. 
Although A" includes refraction, dependent on atmospheric 
conditions, changes in the part of A" that arises from 
refraction are, as we have seen, ninute and ignorable and 
thus A" and B• may be regarded as constant for prc.ctical 
purposes. The correction of the X and Y of a star, to 
allow for dr given by (12), is carried out as follows. 
Set X = r cos 9, Y = r sin G, wh~re 9 is an azimuthal 
angle (on the standard coordinate plane) that is not 
altered by refraction and distortion. Then 

dX = cos G dr; dY = sin g dr 

and since 

one has 

(dX)d == X An (X2 + y2) [l B' 
+ An (X2 + y2)J 

(dY)d == Y A" (X 2 + y2) [1 + B' (X2 + y2).] An 

-13-
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These equations enable the computer readily to correct the 
values of X and Y already computed for each star, thus: 

X' =X+ (dX)d 

Y' = Y + (dY)d 

where the X' and the yr are standard coordinates, with 
refraction and distortion allowed for. 

(XIV) 

6. Determinati_on of the Constants An and B' (Distor­
tion.and Stellar Refraction. To determine A" and B' for a 
camera, it is to be very carefully levelled and then a star­
photograph is to be talten. Compute the uncorrected standard 
coordinates, X and Y, for each star. A nstarn can, of course, 
be a break in a star-trail, or the average of a number of 
breaks in the same trail. By the method later to be described, 
£ind by least squares the plate constants a, b, c, d, e, f in 
the equations 

a + b x + c y = X 

d + e x + f y = Y 

where x and y are plate coordinates. Then find the constants 
.An and Bt from the residuals by least squares, using the ob­
servational equationi 

C1X + A"X (X 2 + Y2
) + B'X (X 2 + Y2

)
2 = a+ bx + cy- X 

cry+ A"Y (X 2 + Y2
) + B'Y (X 2 + Y2 ) 2 = d + ex+ fy- Y 

The unknowns are C', A", and B'; where C', although it must 
be included in the least squares solution, is of no interest 
when found. The stars should cover the plate as fully and as 
uniformly as possible, for best results, and the present deter­
mination need be carried out only once and for all, for each 
camera. 

' 
7. Determination of the Plate Constants. The equations 

a + bx + cy = X' 

d + ex + fy = Y' 
(XV) 

relate the measured plate coordinates, x and y, to the correc­
ted standard coordinates X' andY'. The equations (XV) allow 
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for scale factor, fo~ rotation of the plate in the measuring 
engine, fQr lack of perpendicularity of the ways of the 
measuring engine, for a difference between the scales of the 
x and y screws, and for arbitrary zero-points of x and of y. 
Three stars will determine the plate constants a, b, c, d, e, 
and f; more than three stars will overdetermine the plate 
constants and a least squares solution should be made. The 
solution with n stars, 1, 2, 3, .•• n, proceeds as follows. 
Let x be the mean of the x's, y be the mean of the y's, and 

xt = X X 
(XVI) 

Y' = y y. 

Then the observational equations are 

(a + bx + cy) + bx'. + cyt 1 = X'. 
1. 1. 

(d + ex + fy) + ex'i + :"'Y' = Y'i - i 

and the nor!'!'lal equations (the unkno·wns being (a + bx + cy == at), 
b, c, (d +ex+ fy = d'), e, and f) are 

a' b c = 
n 0 0 

xt2 xtyt ,. x'X' 

yr2 Y'X' 

with similar equations in Y' for dt, e, and f. To solve 
these, compute 

/j. = [ x' 2 J [ Y' 2 J [xryt]2 

bi ={x' i [ yt 2] - Y'i [ x'y']) /6 

ci ={y'i [ xt 2] - x'i [x'y' J }!6 
and check these quantities by the equations 
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[bi] == 0 [ct] = 0 

[bixi] = 1 [biy~. == 0 

[ ci xi] = 0 [ciy~ = 1. 

Then 

a = (1/n) [x• 1] bx cy d = (1/n) [ Y1 J ex fy 

b = [biX' ~ . e = [b1Yt ~ 
c = [c1X' J f = ~iY'~ 
and when only three stars are used, equations (XV) may be 
used for finRl checks and will be satisfied exactly. With 
more than three stars, equations (XIX) must be repeated to 
provide a check; another check i~ that different plates 
will have nearly the same plate constants unless the cameras 
have been disturbed between exposures. 

When there are only three stars, the preceding 
solution holds, but it is quicker merely to solve the six 
simultaneous equations (XV) for a, b, c, d, e, and f by 
successive eliminations. The equations group into two sets 
of three. ,. · 

8. Determinin· the Standard Coordinates of the Aerial 
Point. One has merely to insert in equntion XV the plate 
coordinates of any aerial point in order to find its stand­
ard coordinates, X' andY'. These are to be corrected by 
applying dX and DY given by (XIII), thus: 

X= X' - (dX)d 

y = yt - (dY)d 

where (XIII) may be entered, to sufficient accuracy, with 
X' and Y' instead of X, Y. These standard coordinates have 
next to be corrected for the difference between astronomical 
refraction, and the smaller refraction that affects the ray 
to the airplane immersed in the atmosphere. 
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9. The Refraction Affecting the Aerial Point. 
aerial point were at infinite height, its refraction 

If the 
vvould be 

astronomical. In the d~agramQ Z"ro ___..,..- I 

0 

0 is the camera; Z is the zenith; OPI is the ray from the 
aerial point; P is the aerial point; OQ is the tangent to 
the ray at 0; z0 is the zenith distance of the ray at the 
camera; Zh is the zenith distance of the straight line OP; 
Zoo is the zenith distance of the ray OPI extertded to 
infinity; h is altitude above the camera. The normal dis­
tance from OQ to the ray O.?I at the distance s from 0 is y. 
Now if ~ is the variable zenithdistance along the ray and. 
if u is the index of refraction of air, one has 

dz ::: sin IDl 
ds - z udh 

or since 

dh 
ds = cos z, 

one has 

cot z dz = ~ - u 
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whence 

where u 0 is the index of refraction of the air near the 
camera. 

Since z - z
0 

= 6z is small, one has 

whence 

and 

zh ~ 

We have 

t::.z = JJ.aru tan z
0 

s 

y = J z ds 
0 

zo ;::: y/h sec zo 

:. 
: 

= tan 1 
zo h 

h· 

h 

J~:...u 
0 u 

s Uo-U 
dh. 

0 
u 

dh 

<t ··.~ vrherS p is the air density, so that · 

zh - zo = ( ~o 1) tan z 1 
0 h 

-lS-

h 

J 
0 

1 - (p/po) 
--------~--~ dh. 
l+( u 

0
-1) p/p

0 

(22) 
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.1.·ne denominator is closely enough equal to unity, since 
IJ.o - 1 is small; and thus, ver~ nearly, 

~ 
h 

dl zh - zo = ( ~h - 1) tan zo 
- 1; s (p/po) h-

. ..::. 0 

The astronomical refraction is.z:o- z
0

, given by setting 
h = ro in ( 2 6) : 

z oo - z 
0 

= ( u
0 

- 1) tan z 
0 

, 

wllich agrees with (8) if u = u0 - 1 is te.ken as 58" of arc, 
or as 0.0002812 radians. Thus the difference between the 
astronomical refraction and the actual is 

zoo- zh = (1/1000) tan z
0 

f(h) 

where 

h 

f(h) = 0.2812 ~ J (p/p
0

) dh. 
0 

_ The value of f(h) up to 130,000 feet has been com­
puted from the annual means of the observed values of p/p

0
, 

obtained by sounding balloons, and published by Humphreys:* 

h f(h) h f(h) h f(h) 
(ft) (ft) (ft) 

0 .281 45000 .144 90000 .083 
5000 .258' 50000 .135 95000 .079 

10000 .239 55000 .126 100000 .075 
15000 .222 60000 .118 105000 .072 
20000 .206 65000 .110 110000 .069 
25000 .191 70000 .104 115000 .066 
30000 .178 75000 .098 120000 .063 
35000 .166 80000 .093 125000 .061 
40000 .155 85000 .087 130000 .059 

* W. J. Humphreys, Physics of the Air, Franklin Institute, 1920. 
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The above values apply to a barometer reading of 30 inches, 
and a temperature of 48° F, at the camera. In accordance 
with equation (9), they should be lowered by 1% for each 5° F 
by which the temperature exceeds 48° F, and increased by 1% 
for each 0.3 inches by which the pressm~e exceeds 30 inches. 
The altimeter will furnish values of h accurate enough for 
finding f(h) by means of the preceding table and corrections. 

By the argument of section 5, we allow for the 
difference of refractions by applying the correction dr, 
where 

1000 dr = -K(l + r 2 /K2 ) r f(h)/K 

or by applying the corrections (dX)r' (dY)r' where 

1000 (dX)r = f(h) X [1 + (X2 + Y2 )/K2
] 

1000 (dY)r = f(h) Y [1 + (X2 + y2 )/K2
] 

to the X andY of the aerial point, in order to find xn, Y": 

xu =X - (dX)r 

(XXVIII) 

(XXIX) 

10. The Direction Ratios to Aerial Points. With resoect 
to the set of axes X, Y, z, defined in section 3 (X to the­
east, Y to the north, and Z to the zenith), having an origin 
at either camera: The geometrical coordinates of the inter­
section, of the standard coordinate plane with the straight 
line from the camera to the aerial point, are simply xn, yn, K. 
Hence the direction ratios of the line .from the can::era to the 
aerial point are merely 

X" : yn : K. (XXX) 

It will be henceforth necessary to distinguish between 
the two cameras, which will be denoted as camera 1 and camera 2. 
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~he ratios for earner& 1 will be denoted by X"l : Y"l : K 
· and those for camera 2 by xrrz : Yflz : K. It will be neces­

sary to transform these direction ratios to a standard 
terrestrial system of reference. Because of the curvature 
of the earth, the X, Y, Z systems of the two cameras will 
not be parallel to each other. If the standard system of 
reference were chosen to coincide with the X, Y, Z system 
of one of the cameras, some computation would be saved; 
but then the direction of gravity over the bomb-trajectory 
would not coincide with the standard z-direction. We dis­
cuss the transformations as though the standard reference 
system differed from the X, Y, Z systems of both cameras; 
if it is identical with either of the latter then the 
following results and procedure will still hold. 

Let P denote the origin, at latitude ~0 , of a 
standard terres~rial reference system, ~ , 11 , ·t:. The 
latitudes of cameras 1 and 2 are denoted by cp1 and cp 2, and 
their longitudes measured to the west from P0 are denoted 
by a. and a. • X0 , Y9 , Z0 are a set of axes through P0 as 
origin, such that Z0 lS vertical, Y

0 
i0 to the north, and 

X0 is to the east. X1, Y1, Z1 and x 2, Y2, z2 are similar 
sets of axes through cameras l and 2 as orig1ns; these 
three sets of axes are of course not narallel to each other. 
The standard reference system differs.from the X0 , Y0 , Z0 
system through a rotation about the Z0 -axis, which coincides 
with the t: -axis. The 1l -axis has an azimuth at P0 of 'A , 
measured from north to east; the t -axis ha,s an azimuth at p

0 of ('A+ 90°). We also make use in this discussion of the 
hour-angle declination axes x' 0 , y' 0 , zt 0 ; with P0 as origin, 
with x' 0 lying in the equator and meridan, Y'o pointing to 
the east, and z'o pointing to the north celestial pole. 
x'l, Y'l, z'l and X'2, Y'2, z'2 are similar axes with ori~ · 
gins at cmneras 1 and 2, respectively. 

between 
between 
cosines 

It is necessary to find the cosines of the angles 
the E, , 11 , ( axes and the X1, Y1, Z1 axes; and 
the E, , 1l , ( axes and the X2, Yz, Z2 axes. The 
of the angles between the x0 and the E, systems are 

all = cos A a12 = -sin A a = 0 
13 

a21 = sin A a22 = cos A a23 = 0 

a31 = 0 a32 = 0 a33 = 1 

-21-
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The cosines relating the X
0 

system to the x 1
0 

system are 

x· 
0 bll 

b21 

b.31 

= 
:::: 

:::: 

x• 0 

0 

-sin 

cos 

G>o 

<~'o 

Y' 0 

bl2 ::;: 

b22 ::;: 

.·. 

1 

0 

b32 :::: 0 

bl3 

b23 . 
b33 

zt 
0 

::;: 0 

::::: cos 

= sin 

<l>o 

cpo ' 

the cosines relating the xt 1 system to the xt 0 system are 

xt 
0 

yt 
0 

zt 
0 

ell = 

c21 = 

c31 ::: 

cos Cl. cl2 1 

-sino: 
1 c22 

0 c32 

. Y' . 1 z'l ' 
'. 

= sin Cl. cl3 = 0 
1 
-

= cos Cl. c23 ::: 0 
1 

= 0 I c33 = 1 

and the scheme relating the systems x' 1 and x1 is 

-

d11 = 0 dl2 = -sin q>l dl3 :::: cos cp1 

d21 = 1 d22 :::: 0 d2.3 = 0 

d31 = 0 d32 = cos cpl d33 :::: sin <p1 
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·From these we qompute in succession the arrays 

where 

where 

and 

xt 
0 

ell 

e21 

e21 

3 
e == 2 ij 

k=l 

fll 

f21 

fJl 

3. 

fij = 2 
k=l 
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yt 
0 

el2 

e22 

e22 

fl2 
l• 

f22 

f.32 

' . 

' 

zt 
0 

el3 

e23 

e23 

fl3 

f23 

f33 
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' ' ; 

where 

gll gl2 

g21 g22 

g31 g32 

3 

gij = 2 f ik dkj • 
k=l 

gl3 

g23 

g33 

The preceding computations a.re easily performed if actual 
numbers are inserted in the cells, and lead to the numeri­
cal array, g· ·, relating the x1 , Y1, Z1 system to the 
sta:ndard syst~m. Then the numbers and headings should be 

+ 

gll gi2 Kgl3 

g21 g22 Kg23 

g31 g32 Kg33 

~ 
I 

j 
written dovm on a heavy card, headed "Camera 1". 

In precisely the sa~e way, replacing camera 1 
by camera 2, and thus ~1 by ~2 and ~ by ~ , one obtains 
the scheme, which should be written down nfunerically on a 
heavy card, headed ncarr~era zn. 

Y"2 + 

hll hl2 Khl3 

h21 h22 Kh23 

h31 h32 Kh33 
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The transformation of the direction ratios 
X"1 : Y"1 K to ·the system of standard terrestrial axes 
I; , 1) , 4 is merely 

where A1 : B1 : C1 are the direction ratios, of the 
straight line from camera 1 to the aerial point, expressed 
in the ; , T) , r, system. Likewise, the direction ratios 
X"2 : Y"2 : K from camera 2 are transformed to the ratios 
A2 : B2 : C2 in the I; , YJ , t, system by the equations 

A2 = X"2 hll + yn hl2 + (Khl3) 2 

B2 = xn2 h21 + yn 2 h22 + (Kh23) 

c2 = xn h 2 31 
+ yn 

2 h32 + (Kh33). 

Using the coefficients written on the cards, a good com­
puter should be able to transform a single· set of direc­
tion ratios xu : yn : K in little more than one minute; 
the coefficients, which depend only on the ca~era posi­
tions and on the standard reference system that is used, 
are mere constants. 

If the origin Po· of the reference system I; , T) , 
r, coincides with either ca"nera, and if the YJ -axis runs 

exactly north from that camera, then no transformation is 
necessary of the ratios X11 : yn : K obtained from that 
camera, and one has for that camera A = xu : B = yu : C = K. 
Thus some saving of computation-time can result from such a 
choice of a standard reference system. 

11. The Coordinates of the Aerial Point. Denote the 
; , T) , r, coordinates of camera 1 by a1 , b1 , c1 ; and those 
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of camera 2 by a~, bj, c2. Denote the direction ratios of 
the rays from the two cameras to the aerial point, in the 
x, y, z system, by A1 : B1 : C1 and .A2 : B2 1 C2 as in 
section 10. Then the coordinates x, y, z of the aerial 
point are given by the equations 

(XXXIII) 

where J2. and .!!! are found by solving the observational equations, 
by least squares, 

Compute 

' ' 

" ·~ 

p m = 

Ar - A2 a2 - al 

Bl - B2 b2 - bl 

cl - c2 c2 - cl. 
I• 

' 

. 2 B2 ,+ 2 • F = A l + 1. c 1' 

G = A2 + B2 . 2 
. 2 2 + c 2; 

H = A1A2 + B1B2 + clc2; 

I = (a2-al) Al + (b2-bl) Bl + (c2-cl) cl; 

J = (a2-al) A2 + (b2-bl) Bz + (c2-cl) C2; 

K =·FG- H2. 
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Then 

p = (GI HJ)/K 

m = (HI - FJ)/K 

and these computations should be checked by computing 
residuals of the three observational equations, and 
seeing that the sum of their products with the coe~fi­
cients of 1! should vanish, and that the sum of the1r 
nroducts with the coefficients of m should also vanish. 
This checks the least squares solution. Then from 
(XXXIII), one finds two values of.~::t; , of 11 , and of r, ; 
the agreement indicates the accuracy of the whole work, 
and for final values the averages of the tvm estimates 
of each quantity, 1; , 11 , and r, , should be taken. 

This completes the descri~tion of the method 
of finding the position of an aerial point, from photo­
graphs taken from two vertical cameras, by the use of 
star-images. We can call the preceding method the "long 
method". · · 

1?. Summary of the "Long Methodn; Directions for 
Computers; Estimated Comuutation-Times. The preceding 
exposition has been long, but the method is fairly 
rapid. It may be summarized as follows. At the outset, 
a study should be made as described in section 6 to 
find the distortion and third-order refraction terms for 
the two cameras. At the outset, also, when the piers 
are set out, one should prepare the two cards, each with 
nine constants, described in section 10. Then the pro-. 
cedure with two plates, one from each camera, in a parti­
cular range-bombing program is as follovrs: Measure the 
plate coordinates, (x, y), of each comparison star and 
aerial point on both plates. \vhile this is being done, 
compute the direction cosines Lp, M0 , N0 of the comparison 
stars by equations (I) and (III; -- unless they are al­
r~ady available from the computations of a previous range 
bombing. Correct these for nutation, etc., by ecuations 
(IV) and compute their standard coordinates for each 
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camera by equations (VI) and (VII). Apply the checks 
described in the text, at all stages. Apply the corr~c­
tions given by equations (XIII) to all standard coord1-
nates, by enuations (XIV). Determine the plate constants 
from the comparison stars, using equations (XVI) through 
(XIX). Determine the standard coordinates of the aerial 
points by equations (XV), correct them by equations (XX) 
and (XXIX), and compute their direction ratios by equations 
(X1~I) and ()Jaii), using the two cards. Finally compute 
the space coordinates of the aerial points by using 
equations (XXXV), (XXXVI), and (XXXIII). The writer esti­
mates, very roughly, a computation-time of from four to 
eight hours for a single computer when there are three 
comparison stars, and three aerial ~oints to locate. 
With a sui table arrangement of the ·work, three computers 
should accomplish it in about two to four hours. These 
times are for experienced computers; mediocre ones would 
probably take longer. 

13. Rapid J'.1ethod \1i thout Using Stars. If the cameras 
are very rigidly mounted on well-settled piers (protected 
further from diurnal or other rapid temperature changes, 
and not moving with the tides), it may prove possible to 
avoid the employment of star-images on some of the plates. 
For this "short method" to be possible, fiducial marks must 
b~ impressed on the plates by marking devices that are 
absolutely fixed with respect to the lenses and piers. 
Further, the lens of each camera must be absolutely free 
from rattle in its cell, and the caEera itself ~ust be of 
the firmest and most rigid const·ruction. These require­
ments are unnecessary when star images are used, as in 
the n1ong method". 

Using stars as already described, it is necessarv 
to find the plate constants a, b, c, d, e, and f (as ex- v 

p~ained in paragraph 7) for some plate wJ:1ich we shall call 
the '1standardn plate, which need not photograph the aeria.l­
point. Coordinates of points on the standard plate will 
be written thus: x, y. Then the ulate constants relate 
x and y to directions in spe.ce. Suppose no·N that we 
measure the coordinates x, y for a number of fiducial 
marks impressed on the standard plate by-the camera, and 
then tf3.ke another plate, (the "observing" plate), on which 
the same marks are impressed, without disturbing the camera 
in any way between exposures. \ve can denote coordinates 
on the observing plate by (xr, Y'.) and-l~ we can measure the 

* The plate coordinates (x 1 , y 1 ) are not the space coordinates 
(x 1

, y', z 1 ) of Section 3. 
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coordinates (x', yr) of the fiducial marks and of the 
aerial points on the observing plate. No stars need 
appear on the observing plate. Then it is obvious 
that if there are three or more fiducial mo.rks on 
both plates, we can find from the coordinates x, Y and 
x' ·v' of the fiducial marks, the six coefficients in 
tw~ iinear equations, like the equations (XV), which 
relate the coordinates x',. Y' to the coordinates x, y. 
Such relations will automatically allow for changes · 
of scale in the measuring engine, for lack of perpen­
dicularity of the ways, for rotations of the plates in 
the measuring engine, and for differences between the · 
scales of the two screws of the engine. They will also 
automatically allow for thermal expansions of the plates, 
and of the camera. Thus from the.x', Y' of an aerial 
point on the observing plate, we can compute its x and y 
by the linear relations so found, and thence deduce the 

-directions X" : yn : K of the line to the aerial point, 
and thence finally obtain the space coordinates ~ , TJ , l: 
of the aerial point, just as though the aerial point had 
been photographed on the standard plate itself. Care 
must be taker! to allow for differences between the refrac­
tions influencing the two plates, if they are taken on 
different days; but the procedure is straightforward and 
it is left to the reader to develou the formulae aonli­
cable to the case of three or more-fiducial marks.-· 
UnfortWlately, with the Goerz cameras of the Aberdeen 
Proving Ground, there are only two fiducial mG.r};:s on 
each camera. We shall discuss this case with care. 

Let us inquire as to what differences there can 
be between the standard plate and the observing plate, 
apart from changes of refraction, when the camera has not 
been disturbed. The ~'s and Y..!_'s can differ from the 
xts and yts through changes in temperature, either at the 
~imes of measurement or at the times of exposure, or both. 
C~anges of temper~ture1 wheth~r affecting the plates through 
tneir glass, or tnrougn swell1ng or contracting of the 
camera, or through changes in the pitches of the measuring 
screws, can at most amount to a simple change in scale. 
Thus .we should expect the tV.ro plates to differ· in scale. 
I~ the plates are measured on different engin~~, then the 
p~tcpes_ of the two x-screws can differ in ratio from the 
p1tcnes of the two y-screws. This must be avoided ~1en 
onl:y two fiducial marks are available, by using th~ same 
eng1n~ for measuring both plates~ · F~rth~r, we must take 
ca:e 1n the present nshortn method not to use an engine 
wh1ch has only one screw, and which deuends for measure­
ments of x and y upon a rotation of the plate through 90o 
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between measuring the x' s and mea's-uring ·the Y..' s. It is 
essential to use an engine with two screws, very nearly 
at right nngles. With a single-screw engine the angle 
between the axes of measurement will not only never be 
90° but it will vary from plate to plate according to 
the'accuracy with which the x andy dispositions can be 
reproduced. While that has no evil· effe.ct when there 
are three fiducial marks, it introduces insuperable 
difficulties when there are but two marks. \\fith a two­
screw engine, the angle between the ways may not be goo 
exactlyi and in general it will not be goo; but whatever 
the ang e is, it will remain constant from plate to 
plate unless the engine is subjected to abuse. Moreover, 
the ratios between the scales of the two screws will re­
main constant from plate to plate, since the screws are 
always made of the same metal. Another source of differ­
ence between (x', y') and (x, y) arises from the inevit­
able small differences between the orientations of the 
plates in the measuring engine ·when the plates are 
measured. These cannot be entirely a*oided. Finally, 
the x''s and Y..!_'s can differ from the xrs and z's through 
the two systems' having different zero-points. VIe are 
left, therefore, when all precautions have been taken, 
with the effects of differences of scale, of different 
orientations in the measuring engine, and of different 
zero-points. We discuss the relation between x', y' 
and x, y :i.n the follo;n:ing section, and show hovr the 
effects of the preceding differences can be automatically 
eliminated. 

;, 

14~ Short Method - The RelQtion of the Standard Plate 
to the Observing Plate. In the diagram below, we have 
drawn.the x' &nd Y' axes,·arid also a set of orthogonal 
axes (X"', Y"') such that x"' is parallel to xr. We make 
the origins coincide here· and in the follo·wing transforma­
tions, since zero-point constants are easily inserted 
later on. One unit of x' will be bs units of x"' or Y"', 
and the an~le u measures the lack of perpendicularity of 
the ways or the engine, xt and yr. A unit of theY' screw 
is c 5 units of x"' or Y"'· 

yt 
ynr 

xt 
- -~ (x• ,y') 

ly, 
I 

1----------L------------------------x"',x' 

-30-



·. 
' I 

Then 

xn' = b X' + C yt Sinff s . s 

The total change of scale and the effect of the different 
orientations of the plates in the engine, can be repre­
sented by a transformation from (xn•, ynt) to (xn, y") where 
the latter coordinates differ from the former through a 
rotation ro and through a scale factor ~· Thus 

xn = sxnr cos ro - synt sin m 

yn = sx"' sin m + synt cos w. 

Finally, the measurement of the standard plate in the 
engine corresponds to the diagram 

Y" 
.--7 

I• I 
/ 

~----------~------------~---------xn,x 

where the relation of (x 11 y") to (x, y) is the same as 
the relation of (x"', y 11 t~ to (x', yt). Thus 

1 x = -- (x 11 - y 11 tan :~t) 
bs 

y = yn 
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· rt will be noticed that we have assumed the same relatiye 
pitches of the x and y screws for the two plates, and tne 
same error of the ways ~; and that changes of scale from 
one plate to the other have been absorbed in the cons~ant 
s. Combining the preceding linear equations, and add~ng 
zero-point constants, one finds that in general 

css 
:x = r + s (cos ro - sin ro tan tt') :x'-- siri ro sec tt' • Y' bs 

'b 'S 
y = n + s sin ro sec st • :x'. + s(cos ro + ·sin ro tan #) Y' 

cs 

which can be written 

X= r + Ax• + lly' - [+A tan"' tan u • x' + ll (1-::) y~ 

[ 

. bs 
y = n - Qx' + AY' + + Q (1-c-),'·x' +A s . 

where A has been written for s cos ro and Q has been 
written for -s sin ro sec ~. 

Since t! is a very small angle, and ro is small, 
while the scale factors s, b5 , and c5 are all very close 
to unity, it follows that A is nearly unity while Q is 
approximately equal to ~sin ro. The ratios of scales b5/cs 
is very close to unity for any well-made engine; certainly 
not differing from unity by more than one part in 10,000. 
The angle 1t for a well-made engine should be less than one 
minute, so tan 1t is less than 0.0003. If (by careful aline­
ment of the observing plate in the measuring engine so that 
x, y and x', Y' are nearly the same for both fiducial points) 
we can keeD ro less than 1° then the coefficients of x' and y' in the square bracketed se6ond-order terms are all smaller 
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·than 0.000005 and are ignorable~ We are then left with 

!' +Ax'+ gyt.=x 

U - Q x' .+ A yt = y 

with an accuracy sufficient to yield directions that will 
be correct to better than a second of arc. Here f , A , 
Q , n are unknown .constants to be determined from the 

measured coordinates (x, y) and (x', yt) of the fiducial 
marks. It is easy to aline both plates, in the measuring 
engine, similarly to within one degree of angle. We may 
call r , A , Q , IT the "observing constants". 

15. Short r4ethod - Finding the Observing Constants. 
It is readily found that 

A = [ (xt1 xrz)(xl x2) + (y'l- Y'2)(yl- y2) J/E 

Q = -

(XXXVII) 

. •/ [ (y'l - Y'z)(xl- X;_:) (yl- Yz)(x'l- x'2) J /E 
··.;' ... 

, .exxxvri±) 
r = X l A x'l Qy'l 

where 

The observing constants, R , A , Q , n may be checked 
by the equations (XJ~VII)o Here (xtl, Y'l) and x'2, Y'2) 
are the measured coordinates of the fiducial marks 1 and 2, 
respectively, on the observing plate; and (x1, Yl) and 
(xz, Y2) are the measured coordinates of the fiducial marks 
on the standard plate. As has been pointed out, both plates 
must be measured in the same two-screw measuring engine, 
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after having been inserted in nearly parallel orientations. 
The observing constants are, of course, relative to the 
particular observing plate, and particular standard plate. 
It is entirely proper to use, as a standard plate, the 
average of two or more star-plates taken at nearly the same 
time; then one has to use (later)the average of the air 
temperatures and pressures when correcting for refraction 
on the standard plate. 

16. Short Method - The Direction Ratios to Aerial 
Points. Let the plate coordinates of an aerial point be 
(xt, yt) as measured on the observing plate. Insert these 
values in eauations (YSJ:VII) and thereby obtain (x, y). 
Now insert (x, y) in the left-hand members of equations 
(XV), involving the plate constants of the standard plate, 
and thereby find the standard coordinates (X', Y'), of 
the aerial point. The original values (x', yt) contained 
the effects of refraction of the aerial point, and lens 
distortion. The refraction in question is that appropriate 
to the date of the observing plate. It is char~cteristic 
of the transformations (XV) that they automatically take 
out the first order astronomical refraction for the date 
of the standard plate. Therefore, the standard coordina t.es 
(X', Y1 ) contain the refraction of the aerial point, dis­
tortion, and minus the first order astronomical refraction 
of the standard ulate. If vve subtract from X' and Y' the 
small quantities- (dX)q and (dY)d given by (XIII) entering 
these equations with lX', Y'), we are left with standard 
coordinates free from distortion, and affected by minus 

. the full astronomical refra.ction of the standard plate, 
and plus the refraction of the aerial point on the date 
of the observing plate. If we now apply the difference 
(astronomical refraction on date of standard plate) minus 
(astronomical refraction on date of observing plate) and 
apply further the difference (astronomical refraction) 
minus (refraction to height h) appropriate to the date of 
the observing plate, i•.re shall be left with stc.ndard coor­
dinates (X", yn) fully corrected for distortion and refrac­
tion and comparable in all respects with the standard · 
coordinates (xn, yn) furnished by equations (XXIX) of the 
long method. The difference between the astronomical refrac­
tions on the two dates is obtained readily from equations 
(8) and (9), and thus we have for any aerial point 
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yn = yr - (dY)d + (u0 b 

where 

u = 0.004766 bt 
460 + t 

(dX)r 

and where Uob refers to the observing plate·, ust to the 
standard plate. Here 12.!_ is the air pressure at the 
camera in inches of mercury, and t is the air temperature 
in degrees Fahrenheit. 

Thus the short procedure goes as follows: In­
sert the plate coordinates (x', yt) of the aerial point, 
as measured on the observing plate, 'into equations (XXXVII) 
and thus obtain (x, y). Insert (x, y) into the left-hand 
members of equations (XV) a.p_9ropriate to the observing 
plate, and thus find (X•, Y'). Correct (X 1 , Y1 ) by 
equations (XY~\:IX) to find (xu, Y"). In equations (XXXIX), 
find (dX)d and (dY)9 from equations (XIII), ignoring the 
difference between \X, Y) and (X', Y1 ), and similarly 
find (dX):r: and (dY)r from eq_uat;tons (XXXVIII) and the 
associated table. 

17. Short J\1ethod - The Coordinates of the Aerial 
Point. The quanti ties (xn, yf1) just obtained are precisely 
comparable to the same quantities in the long method, and 
from there on the reduction goes just as in the long 
method, described in sections 10 and 11. 

18. Summary of the "Short" Jl.1:etl1od; Directions for 
Comnuters; Estimated Com:)utation-Times.. Standard plates 
containing star-images must have been previously obtained 
from both ca.meras; then the cc::.;::.eras, without being in any 
way disturbed, photograph the aerial points on observing 
plates. The comparison star-images and fiducial marks 
must be measured on the standard plates; and the plate 
constants must be obtained as in the 11 1ongn method for 
the standard plates. The fiducial marks and the images 
of the aerial points are measured on the observing plates, 
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by the use of the same engine that was used to measure 
the standard plates. The standa.rd plates and observing 
olates must be inserted in the measuring engine (which 
must be of the two-screw type) approximately parallel 
to each other. Find the observing constants by equations 
(XXXVIII), and then by equations \XXXVII), compute stand- .. 
ard plate coordinates (x, y) for each aerial point. ·· 
Compute standard coordinates (X', Y') by equations (XV). 
Correct these by equations (XXXIX), obtaining the correc­
ted standard coordinates (X", Y") of the aerial points. 
By formulae (XXXI) and (XYJ~II), compute the direction 
ratios, using the two cards. Finally compute the space 
coordinates !; , 11 , t; of the aerial points by using 

·equations (XXXV), {XXXVI), and (n'AIII). The writer 
estimates very roughly a computation-time of from three 
to four hours for a single computer 'Nhen there are three 
aerial points to locate. With suit~ble division of the 
work, three computers should accomplish it in about 
one to two hours. These times are for experienced com­
puters; mediocre ones or beginners would iake longer. 
In connecti6n with these estimates, th~ standard.plates 
are supposed already to have been reduced. 

,_ 

Tf__Ar~ 
·T. E. Sterne, 
Captain, Ordnance Dept. 
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